
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

Approved for public release; distribution is unlimited.

 DEFENSE OF NAVAL TASK FORCES FROM ANTI-SHIP
MISSILE ATTACK

by
James R. Townsend

March, 1999

 Thesis Advisor: James G. Taylor

Second Reader: Arnold A. Buss

REPORT DOCUMENTATION PAGE Form Approved
 OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
March 1999

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

4. TITLE AND SUBTITLE
DEFENSE OF NAVAL TASK FORCES FROM ANTI-SHIP MISSILE ATTACK

5. FUNDING NUMBERS

6. AUTHOR(S)
Townsend, James R.

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING
ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING /
MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of
Defense or the U.S. Government.
12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
The quantity, capability, and availability of Anti-Ship Missiles (ASMs) pose a significant threat to the safe operation of

United States Naval Forces in the waters off of potentially hostile shores. Potential adversaries continue to improve their ability to
attack our ships, requiring that we constantly analyze our defenses against such attacks. Existing computer models and simulations,
do not provide force commanders or naval analysts with an adequate tool to properly evaluate the threat and the best ways to
minimize it. This thesis has developed such an analysis tool, called the Anti-Ship Missile Defense (ASMD) model. It allows for
analysis to be performed from an entire task force perspective, modeling the entire process by which ASMs select their targets and
the methods by which the defending escorts assign defensive fire. Effective Screen Design and Defensive Firing Policy is a large
and complex problem, but exploratory analysis using ASMD has yielded useful insights. In ASMD, moving objects are more fully
rendered, featuring smooth acceleration, turning and altitude change features. In support of these complicated moving entities, a
highly capable mathematical library was created to solve the resulting equations of motion. The software components and
architecture developed for ASMD provide significant flexibility and reuse potential for future analysts.
14. SUBJECT TERMS
Aegis Defense System, Standard Missile, Cruise Missile, Java Simulation System

15. NUMBER OF
PAGES

16. PRICE CODE

17. SECURITY CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY CLASSIFICATION OF
THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION OF
ABSTRACT

Unclassified

20. LIMITATION
OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
 Prescribed by ANSI Std. 239-18

ii

iii

Approved for public release; distribution is unlimited

DEFENSE OF NAVAL TASK FORCES FROM ANTI-SHIP MISSILE ATTACK

James R. Townsend
Lieutenant Commander, United States Navy

B.S., Marquette University, 1984

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the

NAVAL POSTGRADUATE SCHOOL
March 1999

Author:

Approved by:

Richard E. Rosenthal, Chairman
Department of Operations Research

Arnold A. Buss, Second Reader

James G. Taylor, Thesis Advisor

James R. Townsend

iv

ABSTRACT

The quantity, capability, and availability of Anti-Ship Missiles (ASMs) pose a

significant threat to the safe operation of United States Naval Forces in the waters off of

potentially hostile shores. Potential adversaries continue to improve their ability to attack

our ships, requiring that we constantly analyze our defenses against such attacks.

Existing computer models and simulations, do not provide force commanders or naval

analysts with an adequate tool to properly evaluate the threat and the best ways to

minimize it. This thesis has developed such an analysis tool, called the Anti-Ship Missile

Defense (ASMD) model. It allows for analysis to be performed from an entire task force

perspective, modeling the entire process by which ASMs select their targets and the

methods by which the defending escorts assign defensive fire. Effective Screen Design

and Defensive Firing Policy is a large and complex problem, but exploratory analysis

using ASMD has yielded useful insights. In ASMD, moving objects are more fully

rendered, featuring smooth acceleration, turning and altitude change features. In support

of these complicated moving entities, a highly capable mathematical library was created

to solve the resulting equations of motion. The software components and architecture

developed for ASMD provide significant flexibility and reuse potential for future

analysts.

v

THESIS DISCLAIMER

The reader is cautioned that the computer programs developed in this research

may not have been exercised for all cases of interest. While every effort as been made,

ithin the time available, to ensure that the programs are free of computational and logic

errors, they cannot be considered validated. Any application of these programs without

additional verification is at the risk of the user.

vi

TABLE OF CONTENTS

EXECUTIVE SUMMARY ... ix

ACKNOWLEDGEMENTS .. xi

I. INTRODUCTION .. 2

A. MOTIVATION .. 2
1. Avoidance of known threats... 3
2. Minimize information provided to an adversary. ... 3
3. Layered defensive systems... 3

B. BACKGROUND.. 4

II. DEVELOPMENT OF A NEW ANALYSIS TOOL, THE ASMD MODEL 9

A. NAVAL TASK FORCE... 9
B. DETECTION OF THE THREAT.. 10
C. DEFENSIVE WEAPONRY. ... 11
D. ASMD SYSTEM. .. 11
E. WHAT’S AHEAD. .. 11

III. LOGIC OF THE ASMD MODEL .. 13

A. AUTOMOBILE COMPONENT FUNCTIONS .. 14
1. Controller ... 16

a) MoverBrain.. 16
b) FireDistributor (cursory introduction) ... 17

2. Movement Element .. 17
a) FullMover .. 17

3. Sensing Elements ... 18
4. Interaction Components ... 19
5. Assembling the Composite Unit... 20
6. FireDistributor (detailed description)... 21

B. REFEREE COMPONENTS .. 22
1. Register. ... 22
2. Mover Sensor Mediator. .. 23
3. Missile Target Mediator... 24

a) Combat Results.. 24
C. SUPPORTING OBJECTS. .. 25

1. Event Step versus Time Step Methodology ... 25
2. MATHEMATICS PACKAGE... 26

a) Polynomial Equation ... 29
b) Complex Number... 29
c) Formula.. 29
d) Polynomial Derivative ... 29
e) Power Series .. 30
f) General Power ... 30
g) RootSolver... 30
h) NewtonsMethod... 30

3. Use of the AdvancedMath Package ... 31

IV. ANALYSIS USING THE ASMD MODEL .. 33

A. MEASURES OF EFFECTIVENESS... 33
1. Alternatives.. 33

vii

2. Analysis of Alternatives ... 33
a) Number of Hits against the HVU... 34
b) Number of Missiles Homing on the HVU ... 34

3. Selecting the MOE... 35
B. PRELIMINARY ANALYSIS .. 35

1. Classification of Data... 35
2. Extremely Large and Diverse Design Variety.. 35
3. Wide Variance in Statistical Results .. 36
4. Suitability for Gaining Meaningful Insights... 36

C. CLOSE DEFENSE OF A HVU USING 3 ESCORTS... 36
D. DEFENSIVE FIRING POLICY .. 40

V. CONCLUSIONS AND FUTURE WORK .. 43

A. THE NEED FOR ANALYSIS .. 43
B. DEVELOPMENT OF THE ASMD MODEL... 43
C. REVIEW OF PRELIMINARY ANALYSIS USING THE ASMD MODEL....................................... 44
D. THE NEED FOR FURTHER STUDY.. 44
E. OTHER USES FOR THE ASMD MODEL... 44

LIST OF REFERENCES ... 46

APPENDIX A. CREATION OF THREAT GRAPHS.. 49

1. Summary of Program ... 50
2. Visual Basic Source Code.. 51

APPENDIX B: JAVA SOURCE CODE FOR THE MASTER ASMD PROGRAM 58

A. SUMMARY OF PROGRAM OPERATION ... 58
1. Preliminary Material .. 58
2. Setting up the Scenario .. 59

a) Starting a Run .. 61
b) Collecting the data ... 61
c) Setting up for the next run ... 62
d) Reporting the Data... 62
e) Analyzing other Attack Angles and Raid Sizes 64

3. TestRegistry Code, in it’s Entirety... 64

INITIAL DISTRIBUTION LIST .. 69

List of figures

1. A Typical Screen………………..…………………………………………………………….…….10

2. Automobile Functional Components…..…………………………………….…………….……...16

3. Mover Brain Functions………………………………….………………………………………....18

4. Full Mover Functionality………………………………………………….……………………….20

viii

5. Sensor Functionality…..………………………………………………………………….……..20

6. Launcher Functionality……………………..………………………………………………..…21

7. Tactical Unit Internal Connections…………………………..………………………………..22

8. Defensive Fire Logic….………………………..………………….……………………………23

9. Mover Sensor Mediator……..………………….…………………….………………….…….25

10. Screen Geometry……………………………………..………………..……………………….39

11. Distribution of Homing Missiles Against Screen…..………………………..………………..40

12. Homing on the HVU……………………………………………………….…………………..41

13. Homing with Destroyers Moved Closer Together…………………………………………...42

14. Hit Comparison SLS vs SSL……………………………..………………………………...….44

15. Homing Results SLS vs SSL…………………………….…………………………………….44

ix

EXECUTIVE SUMMARY

The quantity, availability, and capability of Anti-Ship Missiles pose an ever

increasing threat to the safety of United States Navy forces. Current Anti-Ship Missile

Defense systems are deemed adequate, but the future is more uncertain. Further analysis

of Missile Defense formations and tactics is clearly necessary in order to see the Navy

safely into the twenty first century.

Current naval combat models do not provide sufficient analysis capacity to

evaluate competing tactical alternatives. High-resolution models focus solely on defense

of a single ship and cannot be realistically extended to analyze the problem of screen

defense as a whole. Aggregated campaign models do not attempt to model the process by

which Anti-Ship Missiles detect and attack ships. A new Combat Model is clearly

necessary to conduct meaningful analysis of Screen Defense against Anti-Ship Missiles.

The Anti-Ship Missile Defense (ASMD) simulation was created to correct these

existing model shortcomings. It allows for more realistic object movement simulation,

owing to a substantial supporting mathematical package. This enhanced realism enables

for more accurate simulation of the missile attack. Each incoming missile ’sees’ the

screen of ships from its own unique perspective, owing to the geometry of the screen

design, the size of the ships, the missile’s altitude, and direction of motion.

Exploratory analysis utilizing the ASMD model has revealed considerable insights

into screen design and defensive firing policy. It is possible to prevent enemy missiles

from detecting and homing on the High Value Unit (HVU) by the careful choice of escort

x

ship locations. Analysis has also demonstrated the superiority of a Shoot-Shoot-Look

firing policy, over Shoot-Look-Shoot, when the formation is attacked by moderate sized

enemy missile attacks (10 - 50 missiles).

The ASMD model is a powerful tool, and its uses extend beyond the analysis of

screen defense problems examined so far. The model can evaluate the threat posed by

multi-axis missile attacks, the impact of decoy, and other tactics. It can be used, to plan

missile attacks against enemy ship formations.

This study must be regarded as a first step toward enhancing the safety of our

ships at sea. Additional analysis will be necessary in order to achieve the goal of

minimizing the threat of Anti-Ship Missiles to our naval forces.

xi

ACKNOWLEDGEMENTS

The author would like to express his thanks to Dr. James Taylor and Dr. Arnold

Buss. Their unflagging support, technical advice, and encouragement to think ’outside the

box’ were instrumental in the completion of this work. Dr. Taylor posed an interesting

question regarding the suitability of a hierarchy of models approach to naval warfare. He

allowed the focus of the thesis to evolve into the development of a new combat model,

when it was found that existing simulations were inadequate to the task at hand. Dr. Buss

provided considerable technical advice into the development of a complex and powerful

analysis tool. His timely suggestions were deeply appreciated.

Finally, the author would like to express gratitude for the support and patience of

his wife, Joyce. Her support and forbearance exhibited over nearly 1500 hours of

simulation development were vital to the success of this project.

1

2

 I. INTRODUCTION

Ships of the United States Navy routinely operate in hostile waters throughout the

world. They do this in furtherance of the National policy goals of the United States

Government, working in close proximity to potential adversaries that may possess

weapon systems capable of attacking our forces at sea. The current pattern of operations

indicates that this trend will not change in the foreseeable future.

The hazard presented by Anti-Ship Missiles (ASM) to our Naval Forces is on the

increase. Currently, 13 nations (not including the United States and its NATO allies)

possess an organic ASM production capacity. A further 15 nations are developing this

capability. The dissolution of the Soviet Union has resulted in an increase in the export

of that nations weapon technology and hardware. Other major arms supplying nations,

especially France and China, are making substantial improvements to the capabilities of

their missile systems. While the threat of ASM attack against the United States Navy

may not be overwhelming at the moment, the increase in availability and capability of

these weapons necessitates our constant analysis and development of defensive systems

and tactics so that we can operate with the impunity that we currently enjoy.

A. MOTIVATION

To ward off the ASM threat, our Navy has employed a multi-pronged defensive

policy:

3

1. Avoidance of known threats.

We try to avoid entering within range of known threat weapon systems.

2. Minimize information provided to an adversary.

We minimize the likelihood of an adversary gaining accurate targeting

information against our ships by the maintenance of Carrier Air Patrols (CAP), that serve

to keep adversarial aircraft beyond arm’s reach. We maintain a vigilant watch over the

surface picture identifying all ships in the region. We closely monitor the undersea threat,

by aggressive Anti-Submarine Warfare (ASW) tactics. All of these minimize the risk of

the adversary gaining enough accurate targeting data to mount a serious threat against us.

3. Layered defensive systems.

These defenses consist of search sensors that can detect incoming aircraft and

missiles at long range, Surface to Air Missile (SAM) systems that can track and engage

the airborne adversary, Electronic Warfare systems that can jam or confuse incoming

missiles, and lastly, high speed gun systems that may shoot down incoming weapons at

very close range.

These tactics may not prove to be sufficient in the future. Our forward operations

will make it more likely for the enemy to locate our ships. Shallow waters may defeat our

effective ASW efforts. Mobile ashore sensors and weapon systems may escape our

surveillance and pose a real and substantial threat to our forces. Multi-axis missile

attacks may saturate the defensive systems and render the ships susceptible to damage.

Anti-Ship Missiles (ASMs) may pose the single greatest threat to the safe

operation of our ships in forward areas. The numbers, sophistication, and availability of

4

ASMs serve to ensure that this substantial threat will never diminish. The United States

Navy will need to continuously analyze the threat of ASMs and the proper defensive

measures to counter it.

In light of current operations in the Persian Gulf, the following questions require

immediate analysis:

1) What escort ship spacing and orientation patterns are effective at

minimizing the threat posed by mobile Iraqi Silkworm missile

sites?

2) Is there a benefit to conducting a Shoot-Look-Shoot (SLS)

defensive firing policy, opposed to Shoot-Shoot-Look (SSL), to

counter an incoming missile attack?

It is beyond the scope (and classification) of this thesis to be able to definitively

answer these questions. Missile and Radar performance data is classified, and enemy

planning for missile employment is an unknown. Nevertheless, there is considerable

insight that can be provided by the Anti-Ship Missile Defense (ASMD) model based

solely on unclassified data, operating experience, and reasonable assumptions. Such an

analysis will be conducted in Chapter IV of this report.

B. BACKGROUND.

Existing analysis methods consist of a handful of computer models that simulate

the ASM battle. These models are inadequate, however, in providing meaningful analysis

methods for the purpose of examining screen defense. Until quite recently, the

5

limitations of computer speed and memory largely restricted analysis to the defense of a

single ship against incoming missiles. The results from single ship defense could be

extrapolated to each ship in the formation, because it was assumed (or insufficiently

modeled) that the incoming missile raid would be dispersed uniformly among the ships

present (e.g. a Salvo of 25 missiles against a formation of 5 ships would result in 5

missiles per ship. If each ship could successfully defend against 5 missiles, no damage

would occur, etc…).

The state of the art in ASMD modeling consists of only a few models. These

range from the Single Ship Air Defense Model (SSADM), which simulates the defensive

firing capabilities of a solitary ship that is exposed to enemy missile fire, to several highly

aggregated campaign simulations (such as the Joint Theater Level Simulation [JTLS] and

the Integrated Theater Engagement Model [ITEM]).

SSADM was developed to emphasize the defensive power of a single warship.

SSADM does a credible job of analyzing the process by which an Aegis Cruiser conducts

self-defense. It also models defensive shots against missiles not targeted at the cruiser. It

does not, however, conduct run-time analysis of the flight and homing patterns of the

incoming missiles. The dispersion of enemy fire is set at run-time by the analyst and is

not a function of the actual geometry of the defensive screen. SSADM cannot be

extended, however, to fully examine situations in which more than one ship is present and

may be targeted.

Using these limited capability High-resolution models as their inputs, Joint

Campaign Models, predictably, tend to poorly emulate the impact of ASM weapons

6

against naval forces. For example, the Integrated Theater Engagement Model (ITEM)

treats missile attacks against ships as a purely Monte-Carlo evolution. The incoming raid

is divided evenly over the defending ships, and each ship is adjudged to receive a number

of hits in direct proportion to the number of missiles assigned to it. This is essentially an

extension of the SSADM methodology. The Joint Theater Level Simulation (JTLS) uses

this same logic to adjudicate naval combat. These aggregated models cannot be used to

analyze the impact of screen design and defensive firing posture because they treat all

screens and firing policies as identical items. These models do not consider the

geometrical differences and effect of firing policy.

As discussed above, the process by which an ASM detects and attacks a target

selection has not been effectively modeled. In addition to the simulations discussed

above, most ongoing analysis at the Naval Postgraduate School (NPS) starts the ship

defense problem at a point after the incoming missiles have selected their targets. As a

result, these models also focus on individual ship defense, as opposed to defense of the

entire screen against an entire missile attack.

In light of these limitations, it becomes evident that existing models and

simulations are insufficient in providing a method of analysis. The development of a new

and effective analysis became a necessary precursor to analyzing the problems at hand.

In this thesis, we attempt to redress these simulation limitations by developing a

model that more effectively emulates the problems of ASM Defense. The model employs

a more rational missile distribution pattern that is based on the actual geometry presented

to the incoming missiles. Additionally, this new model will feature data generation

7

capabilities that will allow for ease of incorporation into higher level models (using a

hierarchy of models approach).

It was decided to utilize the Java programming language in the creation of the new

model. Java was a logical choice, because the author could not foresee the precise

computer/operating system arrangement that would be used to conduct additional

analysis, it was desirable to use a platform-independent programming language.

Additionally, there exists a tremendous body of existing Java simulation components

developed at NPS. Former students (LT Kirk Stork, USN and MAJ Arent Arntzen,

RNAF) have developed these components in conjunction with Visiting Professor Arnold

A. Buss. The libraries that were developed, Simkit and Modkit, respectively, have served

as the backbone for the development of the ASMD model.

In Chapter II, we will outline the requirements for this new analysis tool and

sketch out its desired functions. In Chapter III, we will discuss the functions and combat

resolution logic of the ASMD model. In Chapter IV, we will conduct an analysis based

on several simulation runs, and examine the types of results that can be made available to

the analyst. In Chapter V, we will outline other potential uses for the ASMD model, as

well as summarizing the results of this thesis.

8

9

 II. DEVELOPMENT OF A NEW ANALYSIS TOOL, THE ASMD MODEL

When contemplating the creation of a new combat model, it is important to

identify the purposes of that model. These purposes may be manifold, and can include;

(1) Hardware Acquisition, in which the new system (or additional purchases) are

evaluated for their comparative worth. (2) Force Structuring, in which the force is shaped

to incorporate the correct ratio of weapon systems of the right types. (3) Tactical

Development, in which non-lethal simulation can identify potential strengths and

weaknesses of certain tactics. (4) Capability of Forces, where the ability of the force to

accomplish missions in theater is evaluated.

The ASMD model developed for this thesis can directly, or in conjunction with

other tools, be used for each of these purposes.

Now that we have stated the purpose of the new model, and have identified

weaknesses or gaps in existing models, we will define the battle space that affect the

outcome of combat within that realm.

A. NAVAL TASK FORCE.

The first, and most pertinent, entity to define is the naval task force (TF).

Simply stated, a TF is a collection of naval combatants and auxiliaries that are grouped

together for the accomplishment of one or more missions. The individual ships function

together as a team to provide mutual support and defense against opposition to assigned

missions. These ships are typically arrayed into a formation, called a screen, in which the

10

most valuable and important units (termed high value unit, or HVU) are surrounded and

protected by numerous escorting vessels. Within the screen, the escort ships are stationed

in sectors away from the HVU, as shown in Figure 1.

Figure 1 A Typical Screen

B. DETECTION OF THE THREAT.

The ships of the TF possess numerous sensors that range from passive (listen-

only) Electronic Warfare and Sonar systems, to active (emitter) Sonar and Radar systems.

For the purposes of this thesis, we will confine our interest to Radar sensors only. Radar

systems feature a maximum theoretical range, which is a function of their power output,

Pulse Repetition Frequency, and assumed target radar cross-section. Radar systems are

mounted high above the waterline so as to maximize the distance to the horizon.

HVU

CG

DD
DD

FFG

11

C. DEFENSIVE WEAPONRY.

Most ships also host defensive missile and gun systems that can be used to

engage enemy aircraft and missiles. Since we are primarily concerned with missile

defense by missiles in this thesis, we will treat defensive gunfire and electronic warfare

systems in an aggregate fashion.

D. ASMD SYSTEM.

The ASMD system consists of the launching platform (which may be an

aircraft, ship, or shore site), and the individual missiles themselves. These ASM missiles

are launched in the general direction of the TF that has been targeted.

E. WHAT’S AHEAD .

In this section we have discussed the inadequacy of current analysis tools as they apply to

the enhancement of screen defenses. We have briefly defined the ASMD battlefield and

the basic limitations of the new model. In the next chapter, we shall discuss the operation

of the ASMD model, focussing on its more salient features.

12

13

 III. LOGIC OF THE ASMD MODEL

In this section we will examine the operation of the ASMD model. We will focus

only on the most salient points concerning the model functions. A complete User’s

Guide, and other more descriptive work is planned for the future, but is beyond the scope

of this thesis.

Combat in the ASMD model is conducted between entities at the Composite Unit

level. A Composite Unit, for the purposes of this thesis, is a group of special purpose

functional components that operate together. The meaning of this term will become clear

in the example below. Using the premise of small reusable object programming, these

composite units are created from several smaller components that seek to model the

precise behaviors of the composite unit. In the discussion that follows, we will break

apart this Composite Unit into its individual components, and briefly explain the

functioning of each.

It may be useful to have in mind a specific type of Composite Unit with which

almost everyone will be familiar, the automobile. With this image in mind, lets look at

how the functions of this Composite Unit could be divided into logical component

groups.

14

A. AUTOMOBILE COMPONENT FUNCTIONS

A human driver controls an automobile. The driver manipulates the

movement controls of the automobile, such as the steering wheel, accelerator and brake

pedals, to cause the automobile to proceed to destinations that the driver would like to

visit. The automobile has a windshield and mirrors that serve to allow the driver to see

the road surface, information signs, other automobiles, and hazards that must be sensed in

order to proceed from one place to the next. The automobile has turn signals, headlights,

and a horn that allow its driver to signal, and thus interact, with other automobiles on the

road.

Within this small example, let’s now try to compartmentalize the functions that

we have identified. There appear to be four primary divisions of functionality.

There is a controller, namely the driver, that directs the operation of all movement

controls for the automobile.

There is a movement element, consisting of the engine controls, engine and

drivetrain, steering wheel, and tires that cause the automobile to travel from place to place

in response to the driver’s direction.

There are sensing elements, consisting of the windshield, windows, and mirrors,

in addition to the drivers eyes and ears, that allow the driver to evaluate the current

environment and make modifications to the operation of the movement element.

Finally, there are interaction elements, consisting of the horn, turn signals, and

headlights, that can inform other automobiles (and their drivers) about the actions and

15

intentions of this automobile. Figure 2 illustrates the arrangement of these groups of

functionality (or components).

Most entities on a battlefield, such as ships, missiles, or tanks, can be seen to

contain most, if not all, of these types of functionality. They each have a controller (that

may be resident in each unit, or may be lumped together to control the functionality of

many units), a mover of some sort, sensors, and interactors (such as guns) This obvious

compartmentalization scheme has been exploited by others (such as Lt. Stork and Maj.

Arntzen) and was seized upon in the development of the ASMD model, as well.

Now that we’ve identified the functional components that are contained within a

composite unit, we will briefly discuss the characteristics of the specific components

developed for use in the ASMD model.

Figure 2 Automobile Functional Components

Controller
Direct movement of

automobile

Movement Element
Engine, Drivetrain,
Wheels, Steering

Sensing Elements
Eyes, Windows,
Mirrors, Eyes

Interaction Elements
Horn, Signals,

Lights

Environment,

 Other entities

Environment,

 Other entities

16

1. Controller

a) MoverBrain

There are many aspects of naval entity operations that can be seen to be

controlled. Of primary concern are the control of movement, and the management of

defensive systems.

An object called the MoverBrain accomplishes control of movement.

There are two versions of this object, the first is designed for use in controlling objects

that are restricted to movement along the surface of the earth (ocean). These are termed

2–Dimensional (or 2D movers), and consequently, this controller is called the

MoverBrain2D. Aircraft, submarines, and Missiles travel in three dimensions (3D

movers), and are controlled by MoverBrain3D objects.

The MoverBrain is a relatively simple object. It stores the list of

destinations and times that the composite unit will traverse, and tells the Movement

Element exactly how to proceed from one point to the next. Upon start of movement (or

when an intermediate destination is reached or new orders are received), the MoverBrain

examines the movement capabilities of the Movement Element, and plans the best series

of maneuver operations necessary to cause the Composite Unit to arrive at the next

location at the correct time. The MoverBrain sends a message to the Movement Element

telling it exactly what turn rate to assume, (and for how long) so that the Composite Unit

will travel in the correct direction. The MoverBrain directs the Movement Element at

what rate to change speed, and for what duration, so that the correct and necessary speed

17

will be achieved. The MoverBrain3D directs the 3D Mover Element at what rate and for

how long, to change altitude. Figure 3 summarizes these MoverBrain functions.

b) FireDistributor (cursory introduction)

An object called the FireDistributor manages the execution of defensive

fire against incoming missiles. There is one FireDistributor per side in the simulation,

and the functionality of this object will be discussed in greater detail, later.

2. Movement Element

a) FullMover

An object called the FullMover manages movement of the Composite

Unit. Depending on the type of movement desired for the Composite Unit (2D or 3D),

there are FullMover2D and FullMover3D to accomplish it.

The FullMover is a more complicated object than the MoverBrain. The

FullMover responds to the movement orders of the MoverBrain but also must provide

Figure 3 Mover Brain Functions

MoverBrain

Respond to sensors and Task force Controller

Calculate Necessary Maneuver Parameters

 Turn Rate Acceleration Rate Climb Rate
 Turn Duration Acceleration Duration Climb Duration

Direct: Movement Element to execute necessary maneuvers to
accomplish movement orders.

18

instantaneous reports and updates to the precise location of the Composite Unit within the

space of the battle field. The FullMover is the storehouse of all movement limits

(maximum and minimum speed, altitude, turn rate, climb/dive rate, acceleration and

deceleration rates, et. al.) The FullMover must inform other components, using the

Referee, which will be discussed later, of changes to the direction, speed, or altitude of

the Composite Unit. The FullMover also contains ‘forecasting’ logic that allows it to tell

other components where it will be at any time in the future (based on its current

movement parameters). The reasons for this prediction capability will be made clear

later, in our discussion of Detection. Figure 4 summarizes the parameters and functions

of the FullMover Component.

3. Sensing Elements

Sensing capability for the Composite Unit is provided by any number of Sensor

Objects. In the current version of the ASMD model, there are only active Radar systems

employed, although plans exist to extend the model to incorporate passive and multi-

modal sensors (such as Electronic Surveillance Measures [ESM], and Sonar systems).

Limiting Parameters of 2D Mover
Maximum Speed
Maximum Turn Rate
Maximum Acceleration Rate
Maximum Deceleration Rate

Additional Parameters of 3D Mover
Maximum Climb Rate
Maximum Attitude
Max/Min Altitude
Max Range
Min Speed

Calculated Quantities
Current Location
Current Velocity
Future Position
Duration and values of Maneuvers

Interaction with other Components
Provide Location and movement
 information for Composite
 unit and all other components
 in the composite.

19

Each Sensor contains parameters that limit the maximum range at which targets can be

detected, the type of target it can detect (2D or 3D), the rate at which detections can

occur, and the maximum number of targets it is capable of simultaneously tracking. The

Sensor broadcasts messages to the referee components whenever it detects or loses a

target, and when it changes from being ‘on’ to ‘off’ or vice-versa. Again, there may be

multiple Sensors on each Composite Unit. Figure 5 summarizes these functions.

4. Interaction Components

Interaction capability for the Composite Unit is provided by any number of

Launcher Objects. In the current version of the ASMD model, there are only Missile

systems actually utilized. Plans exist to incorporate Guns, Chaff, Torpedoes, etc… into

future versions. Each Launcher possesses properties that control what the maximum

launch rate is, and quantity and types of missiles that can be launched. The launcher

responds to orders from the FireDistributor (which tells the Launcher exactly how many

and what type of missiles to shoot, and at which target(s)). At launch time, the Launcher

Figure 4 FullMover Functionality

Limiting Parameters of Sensor
Maximum Range
Maximum Detection Rate
Maximum Number Targets

Interaction with other Components
Provide Sensor Status and list of

current targets.

Figure 5 Sensor Functionality

20

broadcasts the launch to the referee components so that they are aware of the existence of

a new Composite Unit on the battlefield. Figure 6 summarizes the launcher capabilities.

5. Assembling the Composite Unit

The Composite Unit is constructed by an object called the TacticalUnit. This

object collects the identity of each low-level component that is added to the Composite

Unit, and stores this identity for easy reference. The TacticalUnit object also connects

each of the components to each other so that they may function as one big entity, despite

being totally separate in their functionality. (e.g. this means that other components can

ask a specific radar on the Composite Unit for the radar’s current location. The radar will

have this information automatically forwarded by the Composite Unit’s FullMover.

Orders to the Composite Unit to move to a new location will be forwarded automatically

to the MoverBrain inside of the Composite Unit). For convenience, there are numerous

specific instances of particular Composite Units existing already within the ASMD

project. These include entities such as specific ships, missiles, and shore-based

launchers. Nothing precludes other users from creating their own Composite Units as

required.

Figure 6 Launcher Functionality

Limiting Parameters of Launcher
Maximum Fire Rate
Maximum Guidance Capacity

Interaction with other Components
Respond to Launch Orders.
Create new missile entities.

MoverBrain

FullMover

Sensor Launcher

Position
information

Movement Orders
Movement
Parameters

T
A

C
T

IC
A

L
 U

N
IT

21

6. FireDistributor (detailed description)

We will now discuss the FireDistributor in greater detail. As has been mentioned

before, there is one FireDistributor per side (although future versions of ASMD will

feature one FireDistributor per screen since there may be more than one screen deployed),

and this is the object that performs all of the decision logic necessary to allocate defensive

fire against enemy forces. Whenever a sensor on its side reports that it has detected a new

target, the identity of the target is passed to the FireDistributor. The FireDistributor

searches for this target on its master list of targets for the force. If this is a new target, the

FireDistributor will allocate fire against the target. In a nutshell, this is accomplished by

canvassing each of the capable weapon systems within the force and determining which

system can intercept the target first. The system that could conceivably hit the target first

is assigned the task of launching against the target. Figure 8 summarizes this process.

Figure 7 Tactical Unit Internal Connections

New Target Reported

Get list of all
possible Shooters

Using target speed, course
and range, determine
intercept for each missile

 Determine intercept
point and time

More
Weapons

Yes

No

No

Report best Solution

22

B. REFEREE COMPONENTS

We have made repeated references to Referee Components. It is now time to

discuss these important items. There are three separate components that perform

necessary Referee tasks: the Register, the Mover Sensor Mediator, and the Missile Target

Mediator.

1. Register.

The Register is simply master list of all of the Composite Units on each side. The

Register does not adjudicate any interactions of its own accord, but rather creates and

destroys instance mediators that accomplish the adjudication tasks. The Register reacts to

the addition of a new Composite Unit (such as the launching of a missile) by first looking

at the new unit. If it is a missile, and has a target already assigned (such as a SAM that is

being guided against an ASM), it will create a Mediator between the missile and its

Figure 8 Defensive Fire Logic

Intercept time
< Min Time

23

target. If the new unit does not have a target, the Register will create a Mediator between

every sensor on the Composite Unit and each opposing force Composite Unit that could

be detected by that sensor (provided that the sensor is ‘on’). Once all of the new Unit

sensors are connected, the Register creates a mediator between all opposing force sensors

that are ‘on’ (and could detect the new Unit), and the new unit.

2. Mover Sensor Mediator.

As the name implies, this is a component that resolves issues between a single

moving target and a single detection capable sensor. This mediator does not belong to

any side, but is an unallied component. In this capacity, it can serve as an honest broker

in examining the true battle picture. It can then evaluate if and when the mediated target

becomes detected or undetected by the mediated sensor. Figure 9 summarizes this

process. The Mover Sensor Mediator accesses the mathematical features provided by

several ‘helper’ objects. Each of these will be discussed later.

Target Maneuver
heard

Sensor Maneuver
heard

In Range?

Above
Horizon?

In Altitude
Band?

Sensor
On?

YESNO

Target not
detected or
Target Lost

Target
detected

REPORT

24

3. Missile Target Mediator.

This is a component that adjudicates the interaction between missiles that are

homing against a target. The Mediator listens to the movement of the target, and directs

the homing (or guided) missile to adjust its flight to intercept the target. The Mediator

schedules the detonation of the missile when it is finally close enough to the target to hit

it, and evaluates the outcome of this detonation.

a) Combat Results

There are three outcomes possible when a missile terminates near its

target. The first is that the missile explodes too far away from the target to damage it (a

miss). In this case, the missile is destroyed, but the target is unaffected. If the target is an

ASM (or other enemy aircraft) the side that owned the missile hears the miss, and

schedules another launch against the incoming enemy unit. A second outcome is that the

missile may hit the target. In this case, the missile is destroyed and the target registers a

hit against it. If the target is a missile or aircraft, it too is destroyed and removed from the

battle. The last outcome is that the missile may be destroyed by defensive fire emanating

from the target, or may be confused by Electronic Warfare (such as chaff or jamming). In

25

this case, the missile is destroyed, but is treated as a miss in all other respects. This last

result is only possible when the target is a warship. Each outcome is determined by

Monte Carlo techniques, with a fixed probability of each result occurring.

C. Supporting Objects.

2. Event Step versus Time Step Methodology

The ASMD model uses Event-Step methodology. What this means is that

calculations are performed, and situations evaluated only when conditions actually

change. Checks are not made at fixed time intervals (as in Time-Step methods). The

primary disadvantage of the latter (Time-Step), is that event sequencing may not be

correct and the outcome of the battle may depend greatly on the size of the time step

selected. The choice of Event Stepping avoids this disadvantage, but may sometimes

result in a much larger calculation burden to ensure that events are properly scheduled.

In order to minimize the size of individual components, much of the mathematical

functionality is removed to supporting objects. Each of these can be created and

destroyed rapidly, thereby minimizing the amount of computer memory required for

execution of the model.

The decision, made early on, to incorporate more fully rendered movers (featuring

acceleration and smooth turning) led to problems that were not fully appreciated at the

time that decision was made. The equations of motion for objects that can turn and

accelerate become high order polynomials, the solution of which must be accomplished

quickly during simulation runs. The solution of these polynomials (4th order and higher)

26

necessitated the development of an extensive mathematical package. We will next

discuss the development and functions of the AdvancedMath Package in detail in the

following section.

The discussion that follows is not essential to understanding the analysis

contained in Chapter IV, and the reader may safely skip the remainder of this chapter if he

is not interested in the Math Package development. We’ll start with a review of the

mathematics package, and then explore how it is used by the ASMD model.

2. MATHEMATICS PACKAGE

It was necessary to examine the movement of objects in the defined battlefield,

and explore the limitations of the existing Java.Math library. Simple linear movers, in

which speed and course are constant, can readily report their movement quantities. If we

view the world in two dimensions (X and Y), if an object starts at a point Po, with

coordinates (Xo, Yo), the position of the object at any given time (t), can be easily

calculated from its velocity (Vx, Vy) as Equation (1) demonstrates:

X(t) = Xo + Vx * t, (1)

Y(t) = Yo + Vy * t

To find the time that an object will arrive at a given location, given its starting

point and velocity (and assuming that it is in fact proceeding at the correct speed and

along the correct heading), all one need do is solve a series of linear equations,

Range = sqrt(dY2 + dX2)

Time = range/speed (where speed = sqrt(Vx
2 + Vy

2))

27

This becomes significantly more challenging, however, when we examine the case

where a mover changes course and speed smoothly (as opposed to instantly). If an object

is accelerating (uniformly), its position is found by:

Let
accX represent the acceleration rate in the x direction
accY represent the acceleration rate in the y direction
velX represent the initial velocity in the x direction
velY represent the initial velocity in the y direction
xo represent the initial x position
yo represent the initial y position

x
t

xo .velX t ..1

2
accX t

2

y
t

yo .velY t ..1

2
accY t

2

If, instead, the object is turning,

Let
t represent time (and s be a dummy variable representing time), and
v represent the velocity
Co represent the starting course of the mover
rate represent the turn rate of the mover

The equations of motion for the mover become

x
t

xo d
0

t
s.v sin()Co .s rate

y
t

yo d
0

t
s.v cos ()Co .s rate

x
t

xo .cos ()Co .rate t

rate
v .cos ()Co

rate
v

y
t

yo .sin()Co .rate t

rate
v .sin()Co

rate
v

where rate is the rate of the course change and vt is the speed at time t.

Taking this one step further, if the object is both accelerating and turning, simultaneously,

(2)

(3)

28

Let
t represent time
Vo represent initial velocity
Co represent starting course
yawRate represent the turn rate
accRate represent the acceleration rate

The equations of motion for the mover become

v
t

vo d
0

t
saccRate

v
t

vo .accRate t

x
t

xo d
0

t
s.()vo .accRate s sin()Co .s rate

x
t

+

...xo
()..vo cos()Co .yawRate t yawRate ...accRate cos()Co .yawRate t yawRate t .accRate sin()Co .yawRate t

yawRate
2

..vo cos()Co yawRate .accRate sin()Co

yawRate
2

y
t

yo d
0

t

s.()vo .accRate s cos()Co .s yawRate

y
t

+

...yo
()..vo sin()Co .yawRate t yawRate ...accRate sin()Co .yawRate t yawRate t .accRate cos()Co .yawRate t

yawRate
2

..vo sin()Co yawRate .accRate cos()Co

yawRate
2

With this complicated movement scheme, trying to predict the specific maneuvers

necessary (acceleration and turn rates and times) becomes significantly more challenging.

Still more challenging, is the resolution of interactions between two movers that feature

this type of movement. It became obvious that if we wanted to retain event-step

methodology, we would need to be able to solve equations that were high order

polynomials. These worked out to 4th order polynomials in the event of accelerating

movers, only, and 16th order for turning movers (due to Power series expansion of the

sine and cosine functions). In Java, there was no direct method (nor is there a convenient

(4)

29

method in any other programming language) to solve for all of the roots that could be

generated, including Complex roots. The AdvancedMath package seeks to solve these

limitations.

a) Polynomial Equation

The equation itself is simply an array of coefficients listed in descending

power order. The Equation object incorporates capabilities to multiply, add, or subtract

two polynomials from each other. It can also evaluate the Equation’s value for any

variable input, and can evaluate the results of raising the equation to any integer power.

b) Complex Number

The solution of polynomial equations may contain combinations of real

and complex numbers. The direct root solvers, (such as quadratic, cubic, and quartic

equations) require extensive complex number mathematics. To handles these

occurrences, it was necessary to create a robust Complex Number math function to allow

the addition, subtraction, multiplication and power manipulation of complex numbers.

c) Formula

This object is a combination of equations, which allows for very complex

representations of mathematical systems.

d) Polynomial Derivative

This is a method to calculate the first derivative of polynomial equations

30

e) Power Series

Creates representations of Transcendental Functions (Sine, Cosine, and

Exponential). This allows inclusion of transcendentals in the polynomial equation

functions and root solvers.

f) General Power

The Java Library function, Math.pow only calculates expressions that

involve evaluating xy. If x is zero, y must be greater than zero. If x is 0 or negative, y

must be a whole number. The AdvancedMath function GeneralPower fills in all the gaps,

and correctly calculates xy for all cases of x and y.

g) RootSolver

RootSolver utilizes the Quartic, Cubic, and Quadratic laws to solve 4th, 3rd,

and 2nd order polynomial equations. It can rapidly, and correctly evaluate all real and

complex roots for these types of equations.

h) NewtonsMethod

NewtonsMethod is a more generic root solver. It can take any Polynomial

Equation, or Formula containing Polynomial Equations, and rapidly solve for all real

roots, returning them in ascending value. NewtonsMethod, as the name implies, employs

Newton’s Method to identify a root. Once a root is located, the equation/formula is

divided by this root to generate an equation of one lower power than previously solved.

The process is repeated until no real roots remain (or until the equation becomes a 4th

order equation, in which case RootSolver is called to directly solve for the roots).

31

3. Use of the AdvancedMath Package

The ASMD package (MoverSensorMediator) utilizes the AdvancedMath package

to predict the precise times that the target will rise above or sink below the radar horizon

of the sensor. It also uses this package to determine the times that the target enters and

exits the range envelope of the sensor.

32

33

 IV. ANALYSIS USING THE ASMD MODEL

In the previous chapters we have discussed the reasons for creating the ASMD

Model, and briefly, how it works. In this section, we shall illustrate the analysis that can

be conducted using the model.

The ASMD model was constructed to analyze two specific problems,

1) Determine the best screen arrangement for ships in a task force, and

2) Determine the best defensive firing policy.

Before we can analyze these issues, we will discuss the pertinent Measures of

Effectiveness (MOE).

A. MEASURES OF EFFECTIVENESS

1. Alternatives

There are several alternatives for MOE selection. An obvious choice is to count

the number (or percentage) of enemy missiles destroyed. Another is to evaluate the

number (or percentage) of enemy missile hits against the HVU. Still a third option is the

number (or percentage) of enemy missiles that achieve homing against the HVU.

2. Analysis of Alternatives

Once a raid has been launched, Missile Defense is best characterized as a

defensive battle. As is the case in most defensive battles, the minimization of losses

(either in equipment or territory) is the most important consideration. In view of this, we

can discard a measurement of enemy missile destruction as a meaningful MOE for this

34

model. The remaining two MOE alternatives require more discussion before a final

selection can be made.

a) Number of Hits against the HVU.

Counting the Number of Hits against the HVU is, admittedly, a strong

option as a defensive MOE. It quantifies the result that we most want to prevent, damage

to the HVU. In order for this to be the best choice, however, we must have a very good

measure of all of the properties that result in a hit. The model must properly simulate the

entire flight path from time of launch, thru detection of target, counter-detection by and

counter-attack by the target, and avoidance of terminal defenses before hitting the target.

b) Number of Missiles Homing on the HVU

If we consider only the number of missiles that achieve homing on the

HVU, we do not need to consider the terminal defenses of the target ships. Homing will

have been achieved at a distance substantially beyond terminal defense range. An

advantage of this MOE, is that the process by which homing is established is largely a

function of geometry. The motion of the missile can be precisely simulated and the

conditions under which homing will be achieved (and against what ship) are very well

understood. The terminal defense process is well understood, especially if a single

missile is attacking the ship. What happens when there are more than one missile

attacking the ship simultaneously is not particularly well defined. A final advantage of

this MOE, is that is can adequately serve as a surrogate for measuring the hits against the

HVU.

35

3. Selecting the MOE

Taking all of the above into consideration, it would appear that the most

appropriate MOE for evaluating screen defenses (using the ASMD model) is quantifying

the number of enemy missiles that achieve homing against the HVU. Considerable play-

testing with the model has also revealed the fact that the HVU is extremely difficult to hit

under any circumstances, and there is always a high degree of variance in the measure of

hits, regardless of how many runs are made. The count of homing missiles shows far less

variance, and does appear to be affected greatly by the defensive tactics utilized. Before

proceeding further, let us state the obvious: if a missile does not achieve homing against

the HVU, it cannot hit the HVU.

B. PRELIMINARY ANALYSIS

Preliminary analysis has focussed on the positioning of screening vessels relative

to the HVU and the likely direction of the threat. It is important to recognize that none of

the results presented here is final. This is due to three factors:

1. Classification of Data.

The exact dimensions of ships and performance of radar systems are classified

and thereby excluded from this unclassified thesis.

2. Extremely Large and Diverse Design Variety

The ASMD model is capable of simulating an infinite variety of screen designs,

threat axes and raid sizes. To definitively state that a “final” best solution had been found

would require far more testing than was possible in the time frame of this thesis.

36

3. Wide Variance in Statistical Results

There is a significant relationship between the dispersion of incoming

missile aimpoints and the distribution of homing missiles against a task force.

4. Suitability for Gaining Meaningful Insights

These limitations do not mean that we cannot conduct meaningful analysis using

the ASMD model, however, the use of unclassified sources, operational experience, and

reasonable assumptions can allow analysts to gain significant insights into proper screen

design.

C. CLOSE DEFENSE OF A HVU USING 3 ESCORTS.

A small screen was constructed using an Aircraft Carrier, one Aegis Cruiser, and

two Spruance class destroyers. The Cruiser was stationed ahead of the Carrier, and the

destroyers were stationed on the flanks of the Carrier. The ranges of these stations were

varied in order to identify the best distance to station the ships to counter a threat that

could be mounted from any direction. Figure 10 illustrates this arrangement:

37

As can be seen, the screen is symmetrically distributed by azimuth. The simulated threat

was a simultaneous raid by 10 Silkworm missiles. Raids were launched from 000R to

355R at 5 degree increments, and the raids were repeated 5 times in order to dampen the

variance. The escorts are stationed 6 nautical miles (nm) from the carrier. Figure 11

illustrates the distribution of homing missiles against the screen. The charts on the

following few pages were specifically built to show the threat posed to individual ships in

the screen. An explanation of their interpretation and their method of construction is

given in Appendix A.

Figure 10 Screen Geometry

CG

DD

CVN

DD

120 120

120

38

Of particular concern is the homing against the HVU, in this case the CVN-68 at the

center of the screen. The next figure looks specifically at this distribution

Figure 11 Distribution of Homing Missiles Against Screen

CG

CVN

DD DD

CG

39

It is easy to see that there is a large gap in protection afforded by this screen. Attacks

originating from the area between the Destroyers and behind the Carrier achieve a high

degree of success in homing against the Carrier.

In an effort to reduce this gap, let’s first try moving the destroyers farther back, to

130 R and 230 R (vice 120 and 240 as before).

Now, the vulnerability to attacks from behind looks like this:

Figure 12 Homing on the HVU

10
missiles

40

A dramatic improvement was achieved by simply moving the destroyers a mere 10

degrees farther aft relative to the carrier.

Other analyses could be performed using the ASMD model to evaluate whether

other combinations of screen spacing would be more or less effective in protecting the

HVU.

D. DEFENSIVE FIRING POLICY

The second question that we examined was whether an SSL or SLS firing policy

would be more effective (and under what conditions) in protecting the HVU. The

defensive screen presented in Figure 10, with escorts stationed 6 nm from the CVN was

exposed to missile attacks. The simulated threat was 10 Silkworm missiles. Separate

analysis were conducted with attacks originating from a bearing of 000R and 060R. Fifty

attacks from each bearing were simulated in order to reduce variance. Figures 14 and 15

summarize the Hit and Homing results from these attacks.

Figure 13 Homing with Destroyers moved closer together

41

The charts clearly illustrate the superiority of SSL compared to SLS as a defensive

firing policy against small numbers of missiles (in this case 10). Additional analysis has

demonstrated that SSL remains superior until the number of missiles in the attack

approaches 50 (if the screen contains a single cruiser). Above this number, the capacity

of the Cruiser missile battery which initially contains 122 missiles, becomes a limiting

item, and SLS starts to achieve parity. It should be noted that aside from our NATO

allies, specifically Great Britain, and Russia, no country currently possesses the capability

of mounting this large of an attack against our ships. This will probably not remain the

case, however. Many nations, especially China, Iraq, Iran, and North Korea, are

aggressively increasing their ASM inventories. ASM’s present a cheap alternative to the

construction of large navies, and can more rapidly ‘level the playing field’ than an

expensive naval construction program. As a result, the problem of countering large scale

ASM attacks will require considerable thought and analysis in the future.

42

0
0.5

1
1.5

2
2.5

3

Mean # Homing

A
nt

ie
ta

m

N
im

itz

S
tu

m
p

H
an

co
ck

0 SLS
0 SSL

60 SLS
60 SSL

Ship

Angle of
Attack

SLS and SSL Compared

0

0.01

0.02

0.03

0.04

0.05

0.06

Mean # Hits

Antietam Nimitz Stump Hancock

0 SLS

0 SSL

60 SLS

60 SSL

Ship

Angle of Attack

SLS and SSL Compared

Figure 15 Homing Results SLS vs SSL

Figure 14 Hit Results SLS vs SSL

43

V CONCLUSIONS AND FUTURE WORK

A. The need for analysis

In this thesis, we have demonstrated the need for continued analysis in the area of

Screen Defense against Anti-Ship Missile attacks. The Anti-Ship Missile Defense

(ASMD) model has yielded significant insights into defense against small scale missile

attacks, but further analysis is required because of the increasing threat posed by weapon

proliferation, weapon capabilities, and the continued forward deployment of our

warships.

B. Development of the ASMD Model

Existing simulation and model technology was found to be insufficient to conduct

the analysis desired, so a new computer model (ASMD) was created. This new model

more fully emulates the actual motion of missiles in space, with objects that accelerate

and turn smoothly. The ASMD model features, as an adjunct, a sophisticated and highly

capable mathematics package that can be utilized by future analysts to render moving

objects even more accurately

We have sought to provide a method for analyzing the effectiveness of various

defensive options, screen geometry, and defensive firing policy in enhancing the safety of

the High Value Unit. Preliminary analysis was conducted using the ASMD model to

illustrate the strengths and weaknesses of a few screen design and firing policy options.

44

C. Review of Preliminary Analysis using the ASMD model

Analysis using the ASMD model has borne out the superiority of Shoot-Shoot-

Look defensive firing policies over Shoot-Look-Shoot in defending the ships against

small to medium sized missile attacks (10 – 50 missiles). It has also been utilized to

show the ability of proper escort placement to prevent enemy missiles from achieving

homing against the HVU.

D. The need for further study

This study must be regarded as only the first step toward enhancing the safety of

our naval ships at sea. Additional analysis, using more accurate and classified data will

be necessary in order to state definitively the ‘best’ screen arrangements to counter a

specific threat.

E. Other uses for the ASMD Model

While the ASMD model was developed with screen defense in mind, it may also

be used to analyze many other situations. For example, it is well suited to the planning

and execution of missile attacks against enemy warship formations. It can be utilized to

evaluate the threat of multi-axis attacks and large scale missile raids as well as to evaluate

the potential impact of decoy or other tactics in Naval Missile warfare.

45

46

LIST OF REFERENCES

Arntzen, A., Software Components for Air Defense Planning, Master’s Thesis, Naval

Postgraduate School Monterey, CA, 1998.

Bradley, G.H., Buss A.H., An Architecture for Dynamic Planning Systems Using Loosely

Coupled Components, Proposal for Reimbursable Research, Naval Postgraduate School

Monterey, CA, 1997.

Buss, A.H., Stork, K., “SIMKIT User’s Manual”, Naval Postgraduate School Monterey,

CA, 1998.

Gamma, E., et al., Design Patterns, Elements of Reusable Object-Oriented Software,

Addison-Wesley 1995.

Hughes, W.P., Fleet Tactics: Theory and Practice, Naval Institute Press, 1986.

Korzeniewski, G., Truelove, M.R., et al., “Simulation Technologies in the Joint

Warfighting Environment”, Science Applications International Corporation, McLean,

VA, 1998.

47

Pike, J., Bolkcom, C., “Attack Aircraft Proliferation: Issues for Concern”, Chapter 5,

Federation of American Scientists, 1996.

Prezelin, B., Baker, A.D., Combat Fleets of the World 1993, Their Ships, Aircraft, and

Armament, Naval Institute Press, 1993.

Stork, K., “Sensors in Object Oriented Discrete Event Simulation”, Master’s Thesis,

Naval Postgraduate School Monterey, CA, 1996.

48

49

APPENDIX A. CREATION OF THREAT GRAPHS

During the creation and execution of the ASMD model, it was desired to create a

highly effective and appealing chart that could summarize the threat posed to ships by

attacks from various directions. The picture type illustrated below, is what was desired

for this purpose.

Unfortunately, none of the readily available software products available

(Microsoft Excel, Microsoft Powerpoint, Corel Draw, Mathcad, and SPLUS) are capable

of generating this type of graph. Because of this, it was necessary to build a computer

program that would do the job.

The ASMD model, in its current incarnation, provides output data in the form of a

text file. A Visual Basic program was created that could read this text output and convert

it into a Bitmap format picture. This picture can then be imported into any standard

graphics capable program for manipulation and display. The computer code necessary to

10 missiles

Mean number

Homing against the HVU

Max number

50

accomplish this conversion is provided below. It should be noted that this code was

written to accommodate the specific text format generated by the ASMD model. It could

be modified to handle other formats, if desired. Future versions of the ASMD model will

feature an organic graphing capability written in the Java programming language. The

time constraints of the thesis precluded this from being developed earlier.

1. Summary of Program

In a nutshell, the user is prompted to select a text file for conversion. Once he

makes a selection, the program opens the desired file and analyzes it for the following

pertinent data:

-Number and Names of Ships

-Number and value of attack angles

-Number and value of missile raid sizes

These are used in order to create internal data arrays that will be filled by the program.

After this preliminary search is accomplished, the program automatically scans

the text file for information regarding the number of hits, number of missiles that achieve

homing, and the number of defensive missiles fired by each ship at raids originating from

each attack angle and for each missile raid size simulated. This information is contained

in text fields that provide values of Mean, Maximum, Minimum, and Standard Deviation

for the trial that was conducted.

A separate Visual Basic Form (essentially a display window) is created for each

combination of Ship and Missile Raid Size. Lines are drawn on each form that

correspond to the mean value of hits, homing, and shots fired for each angle of attack.

51

Finally, the program saves the attack graph that was created on each form as a

Bitmap formatted picture with a unique name that identifies the ship and the missile raid

size.

2. Visual Basic Source Code

Private Sub cmdStart_Click()
 Dim fileName As String
 dial1.ShowOpen
 fileName = dial1.fileName
 ReadFile (fileName)
End Sub

Private Sub ReadFile(fileName As String)
 Open fileName For Input As #1
 Dim ShipName() As String
 ReDim ShipName(10)
 Dim longString As String
 Dim msg As String
 Dim enabled As Boolean
 enabled = True
 Dim nameEnabled As Boolean
 nameEnabled = True
 Dim testCharacter As String
 Dim ship As Integer
 Dim chrPos As Integer
 ’Find the names of ships

 ’Now look for raid sizes and angular data
 enabled = True
 Dim raid() As Integer ’raid size
 ReDim raid(20)
 Dim raidNumber As Integer
 raidNumber = 0
 Dim angle() As Double
 ReDim angle(360) ’allow 1 degree spacing, will later truncate
 Dim angleNumber As Integer
 angleNumber = 0
’ Open fileName For Input As #1
 Do While Not EOF(1)
 Line Input #1, longString
 If UCase$(Left$(longString, 4)) = "RAID" Then
 chrPos = 1
 testCharacter = "T"
 While testCharacter <> Chr$(13) And testCharacter <> ""
 testCharacter = Mid$(longString, chrPos, 1)
 If testCharacter > Chr$(47) And testCharacter < Chr$(58) Then ’a number
 msg = msg + testCharacter

52

 End If
 chrPos = chrPos + 1
 Wend
 raid(raidNumber) = Val(msg)
 raidNumber = raidNumber + 1
 If raidNumber > 1 Then enabled = False
 msg = ""
 End If
 If Left$(longString, 4) = "Name" And nameEnabled Then ’start line
 While Left$(longString, 5) <> "Angle"
 Line Input #1, longString
 chrPos = 1
 Do While testCharacter <> Chr$(9) And chrPos < 35
 testCharacter = Mid$(longString, chrPos, 1)
 ShipName(ship) = ShipName(ship) + testCharacter
 chrPos = chrPos + 1
 Loop
 ShipName(ship) = Left$(ShipName(ship), chrPos - 2)
 ship = ship + 1
 testCharacter = "T"
 Wend
 ReDim Preserve ShipName(ship - 2)
 ship = ship - 1
 nameEnabled = False
 End If
 If UCase$(Left$(longString, 5)) = "ANGLE" And enabled Then
 chrPos = 1
 testCharacter = "T"
 While testCharacter <> Chr$(13) And testCharacter <> ""
 testCharacter = Mid$(longString, chrPos, 1)
 If testCharacter > Chr$(47) And testCharacter < Chr$(58) Then ’a number
 msg = msg + testCharacter
 End If
 If testCharacter = Chr$(46) Then msg = msg + testCharacter ’decimal
 chrPos = chrPos + 1
 Wend
 angle(angleNumber) = Val(msg)
 angleNumber = angleNumber + 1
 msg = ""
 End If
 Loop
 ReDim Preserve angle(angleNumber - 1)
 ReDim Preserve raid(raidNumber - 1)
 Close #1
 Dim shipNumber As Integer
 Dim shipForm() As New frmShip
 Dim numberForms As Integer
 numberForms = (raidNumber) * (ship)
 ReDim shipForm(numberForms)
 Dim formNumber As Integer
 formNumber = 0
 Dim nameOfForm As String

53

 For numberRaid = 0 To raidNumber - 1
 For shipNumber = 0 To ship - 1
 nameOfForm = Left$(fileName, Len(fileName) - 4) + ShipName(shipNumber) + "Raid size" +
Str(raid(numberRaid))
 With shipForm(formNumber)
 .Initialize (nameOfForm)
 .Width = MDIForm1.Height / 3#
 .Height = .Width
 .Visible = True
 .Left = shipNumber * .Width
 .Top = numberRaid * .Height
 End With
 formNumber = formNumber + 1
 Next shipNumber
 Next numberRaid
 shipNumber = ship
 ’Now work on getting the actual data
 Open fileName For Input As #1
 Dim numberHits() As Double
 Dim standardDevHits() As Double
 Dim maxHits() As Integer
 Dim minHits() As Integer
 Dim numberHome() As Double
 Dim standardDevHome() As Double
 Dim maxHome() As Integer
 Dim minHome() As Integer
 Dim numberShots() As Double
 Dim standardDevShots() As Double
 Dim maxShots() As Integer
 Dim minShots() As Integer
 ReDim numberHits(raidNumber, angleNumber, shipNumber)
 ReDim standardDevHits(raidNumber, angleNumber, shipNumber)
 ReDim maxHits(raidNumber, angleNumber, shipNumber)
 ReDim minHits(raidNumber, angleNumber, shipNumber)
 ReDim numberHome(raidNumber, angleNumber, shipNumber)
 ReDim standardDevHome(raidNumber, angleNumber, shipNumber)
 ReDim maxHome(raidNumber, angleNumber, shipNumber)
 ReDim minHome(raidNumber, angleNumber, shipNumber)
 ReDim numberShots(raidNumber, angleNumber, shipNumber)
 ReDim standardDevShots(raidNumber, angleNumber, shipNumber)
 ReDim maxShots(raidNumber, angleNumber, shipNumber)
 ReDim minShots(raidNumber, angleNumber, shipNumber)
’ Dim numberRaid As Integer
 Dim numberAngle As Integer
 Dim numberShip As Integer
 Dim testString As String
 Do While Not EOF(1)
 For numberRaid = 0 To raidNumber - 1
 For numberAngle = 0 To angleNumber - 1
 While Left$(testString, 4) <> "Name" And Not EOF(1)
 Line Input #1, testString
 Wend

54

 Dim dataBit As Integer
 dataBit = 1
 For numberShip = 0 To shipNumber - 1
 ’Find first ship data
 If EOF(1) Then Exit Do
 Line Input #1, testString
 chrPos = Len(ShipName(numberShip)) + 1
reTry:
 If Mid$(testString, chrPos, 1) = Chr$(9) Then
 chrPos = chrPos + 1
 GoTo reTry
 End If
 For dataBit = 1 To 12
 msg = ""
 Do While Mid$(testString, chrPos, 1) <> Chr$(9)
 testCharacter = Mid$(testString, chrPos, 1)
 msg = msg + testCharacter
 chrPos = chrPos + 1
 Loop
 If Right$(msg, 1) = Chr$(9) Then msg = Left$(msg, Len(msg) - 1)
 Select Case dataBit
 Case 1:
 numberHits(numberRaid, numberAngle, numberShip) = Val(msg)
 Case 2:
 standardDevHits(numberRaid, numberAngle, numberShip) = Val(msg)
 Case 3:
 maxHits(numberRaid, numberAngle, numberShip) = Int(Val(msg))
 Case 4:
 minHits(numberRaid, numberAngle, numberShip) = Int(Val(msg))
 Case 5:
 numberHome(numberRaid, numberAngle, numberShip) = Val(msg)
 Case 6:
 standardDevHome(numberRaid, numberAngle, numberShip) = Val(msg)
 Case 7:
 maxHome(numberRaid, numberAngle, numberShip) = Int(Val(msg))
 Case 8:
 minHome(numberRaid, numberAngle, numberShip) = Int(Val(msg))
 Case 9:
 numberShots(numberRaid, numberAngle, numberShip) = Val(msg)
 Case 10:
 standardDevShots(numberRaid, numberAngle, numberShip) = Val(msg)
 Case 11:
 maxShots(numberRaid, numberAngle, numberShip) = Int(Val(msg))
 Case 12:
 minShots(numberRaid, numberAngle, numberShip) = Int(Val(msg))
 End Select
 chrPos = chrPos + 1
 Next dataBit
 Next numberShip
 Next numberAngle
 Next numberRaid
 Loop

55

 Close #1
 ’draw the lines
 formNumber = 0
 For numberRaid = 0 To raidNumber - 1
 For numberShip = 0 To shipNumber - 1
 For numberAngle = 0 To angleNumber - 1
 Dim angleRadians As Double
 angleRadians = angle(numberAngle) * 3.14159 / 180
 Dim x1 As Single
 Dim x2 As Single
 Dim y1 As Single
 Dim y2 As Single
 x1 = 0
 y1 = 0
 x2 = 0
 y2 = 0
 Dim deltaX As Double
 Dim deltaY As Double
 Dim minValue As Double
 Dim maxValue As Double
 ’Determine standard deviation spread and plot it
 minValue = numberHits(numberRaid, numberAngle, numberShip) -
standardDevHits(numberRaid, numberAngle, numberShip)
 If minValue < 0 Then minValue = 0

minValue = numberHits(numberRaid, numberAngle, numberShip) +
standardDevHits(numberRaid, numberAngle, numberShip)

 deltaX = Sin(angleRadians) * minValue
 deltaY = Cos(angleRadians) * minValue
 x1 = deltaX
 y1 = deltaY
 x2 = Sin(angleRadians) * maxValue
 y2 = Cos(angleRadians) * maxValue
 shipForm(formNumber).Line (x1, y1)-(x2, y2), QBColor(4)
 x2 = Sin(angleRadians) * maxHits(numberRaid, numberAngle, numberShip)
 y2 = Cos(angleRadians) * maxHits(numberRaid, numberAngle, numberShip)
 DrawWidth = 5
 shipForm(formNumber).PSet (x2, y2), QBColor(4)
 x2 = Sin(angleRadians) * minHits(numberRaid, numberAngle, numberShip)
 y2 = Cos(angleRadians) * minHits(numberRaid, numberAngle, numberShip)
 shipForm(formNumber).PSet (x2, y2), QBColor(4)
 DrawWidth = 1
 angleRadians = angleRadians + (3 * 3.14159 / 180)
 minValue = numberHome(numberRaid, numberAngle, numberShip) -
standardDevHome(numberRaid, numberAngle, numberShip)
 If minValue < 0 Then minValue = 0
 minValue = numberHome(numberRaid, numberAngle, numberShip) +
standardDevHome(numberRaid, numberAngle, numberShip)
 deltaX = Sin(angleRadians) * minValue
 deltaY = Cos(angleRadians) * minValue
 x1 = deltaX
 y1 = deltaY
 x2 = Sin(angleRadians) * maxValue

56

 y2 = Cos(angleRadians) * maxValue
 shipForm(formNumber).Line (x1, y1)-(x2, y2), QBColor(5)
 x2 = Sin(angleRadians) * maxHome(numberRaid, numberAngle, numberShip)
 y2 = Cos(angleRadians) * maxHome(numberRaid, numberAngle, numberShip)
 DrawWidth = 5
 shipForm(formNumber).PSet (x2, y2), QBColor(5)
 x2 = Sin(angleRadians) * minHome(numberRaid, numberAngle, numberShip)
 y2 = Cos(angleRadians) * minHome(numberRaid, numberAngle, numberShip)
 shipForm(formNumber).PSet (x2, y2), QBColor(5)
 DrawWidth = 1
 ’ angleRadians = angleRadians - (6 * 3.14159 / 180)
 ’ minValue = numberShots(numberRaid, numberAngle, numberShip) -
standardDevShots(numberRaid, numberAngle, numberShip)
 ’ If minValue < 0 Then minValue = 0
 ’ minValue = numberShots(numberRaid, numberAngle, numberShip) +
standardDevShots(numberRaid, numberAngle, numberShip)
 ’ deltaX = Sin(angleRadians) * minValue
 ’ deltaY = Cos(angleRadians) * minValue
 ’ x1 = deltaX
 ’ y1 = deltaY
 ’ x2 = Sin(angleRadians) * maxValue
 ’ y2 = Cos(angleRadians) * maxValue
 ’ shipForm(formNumber).Line (x1, y1)-(x2, y2), QBColor(1)
 ’ x2 = Sin(angleRadians) * maxShots(numberRaid, numberAngle, numberShip)
 ’ y2 = Cos(angleRadians) * maxShots(numberRaid, numberAngle, numberShip)
 ’ DrawWidth = 5
 ’ shipForm(formNumber).PSet (x2, y2), QBColor(1)
 ’ x2 = Sin(angleRadians) * minShots(numberRaid, numberAngle, numberShip)
 ’ y2 = Cos(angleRadians) * minShots(numberRaid, numberAngle, numberShip)
 ’ shipForm(formNumber).PSet (x2, y2), QBColor(1)
 DrawWidth = 1
 Next numberAngle
 formNumber = formNumber + 1
 Next numberShip
 Next numberRaid
 For formNumber = 0 To numberForms - 1
 For raidSize = 10 To 40 Step 10
 shipForm(formNumber).Circle (0, 0), raidSize
 Next raidSize
 Next formNumber
End Sub

57

58

APPENDIX B: JAVA SOURCE CODE FOR THE MASTER ASMD PROGRAM

The ASMD model is a large and complex computer program. Future analysts

should not be concerned, too much, with the intricacies of the entire program, however.

All of the individual components that make up the model can readily be utilized by a

relatively small and simple master program. The operation of this master program will be

summarized in this annex. The Java source code is provided (and annotated) to illustrate

the ease with which screens may be designed and analyzed. The ASMD model itself is

open-source, meaning that any person who desires to utilize it may do so by obtaining a

copy from the Operations Research Department of the Naval Postgraduate School.

A. SUMMARY OF PROGRAM OPERATION

The master ASMD Program, currently called TestRegistry, is simple but

powerful. We will analyze the major functional blocks, and then provide the source code

in its entirety.

1. Preliminary Material

This section of code contains the computer calls to outside libraries that are

needed for program execution.

package ASMD;
import modkit.*;˝
//import Working.*
import simkit.*;
import modutil.spatial.*;
import modsim.*;
import java.util.*;
import simkit.data.*;
import java.text.NumberFormat;
import java.util.Locale;

59

2. Setting up the Scenario

In this section, TestRegistry creates the Anti-Ship Missile Attack Scenario that
will be analyzed.

public class TestRegistry extends BasicModSimComponent {

 public static void main(String[] args) {
 Locale loc = Locale.US;
 NumberFormat nf = NumberFormat.getInstance(loc);

Missile raids will be conducted, starting with 10 missiles in the raid:

 int numberOfMissiles = 10;

There will be 4 ships in the screen:

 BasicModSimComponent[] ship = new BasicModSimComponent[4];

The program will terminate with a maximum raid size of 10 missiles:

 while (numberOfMissiles <= 10) {
 System.out.println("Raid Size = " + numberOfMissiles);

We will examine missile attacks from relative bearings between 120R and 240R:

 double angle = 120.0;
 while (angle < 240) {

This next section sets up the data collection parameters for the attack:

 SimpleStats[] hitCounter = new SimpleStats[5];
 SimpleStats[] homesCounter = new SimpleStats[5];
 SimpleStats[] shotsCounter = new SimpleStats[5];
 SimpleStats missilesShotDown = new SimpleStats(SamplingType.TALLY);
 SimpleStats missilesPassive = new SimpleStats(SamplingType.TALLY);
 SimpleStats missilesFuel = new SimpleStats(SamplingType.TALLY);
 for (int i = 0; i < 4; i++) {
 hitCounter[i] = new SimpleStats(SamplingType.TALLY);
 homesCounter[i] = new SimpleStats(SamplingType.TALLY);
 shotsCounter[i] = new SimpleStats(SamplingType.TALLY);
 }

A total of 5 runs will be conducted at each attack angle (and for each missile raid size):

 for (int runCount = 1; runCount <= 5; runCount++) {

60

Creates a data collection entity:

 Tabulator tab = new Tabulator();

Specifies that a Shoot-Look-Shoot (SLS) defensive firing policy will be in effect. One
missile will be fired in self defense each time. SSL would be specified as (“SSL”, 2):

 FireMode fireMode = new FireMode("SLS", 1);

Creates the Register utilizing two sides in this battle, BLUE and RED:

 Side[] colors = {Side.BLUE, Side.RED};
 NewRegister r = new NewRegister(colors, tab, fireMode);

Creates individual ships from pre-defined ship classes. These ship classes feature all of
the necessary movement, sensor, and weapon data to conduct the analysis. Each ship is
assigned to the BLUE side:

 CG47 Antietam = new CG47("Antietam", Side.BLUE);
 CVN Nimitz = new CVN("Nimitz", Side.BLUE);
 DD963 Stump = new DD963("Stump", Side.BLUE);
 DD963 Moos = new DD963("Hancock", Side.BLUE);

Gives each of the ships a unique name for identification purposes:

 ship[0] = Antietam;
 ship[1] = Nimitz;
 ship[2] = Stump;
 ship[3] = Moos;

The next section creates a screen with Nimitz as the guide. It defines screen sectors and
assign ships to them:

between 130R and 150R, 2 nm to 4 nm for Stump
between 210R and 230R, 2 nm to 4 nm for Moos
between - π/8 (-045R) and π/8 (045R), 4 nm to 8 nm for Antietam

for (int shipNumber = 0; shipNumber < ship.length; shipNumber++) {
 r.addUnit(ship[shipNumber], true);
}
Screen screen = new Screen("Blue Screen");

 screen.addGuide(new ScreenLocation(new Coor4D(0, 0, 230, 0), Nimitz));
 double angle1 = 130.0 * Math.PI/180.0;
 double angle2 = 150.0 * Math.PI/180.0;
 screen.addUnit(new ScreenLocation(new Coor4D(2, 4, angle1, angle2), Stump));
 angle1 = 210.0 * Math.PI/180.0;
 angle2 = 230.0 * Math.PI/180.0;
 screen.addUnit(new ScreenLocation(new Coor4D(2, 4, angle1, angle2), Moos));
 screen.addUnit(new ScreenLocation(new Coor4D(4, 8, -Math.PI/8.0, Math.PI/8.0), Antietam));

The next 2 lines create a track for the screen. The guide will pass thru location
(18.0, 47.0) at 4 hours into the problem, and

61

(36.0, 48.2) at 7 hours.
The 3600 factor is needed to convert the time into seconds.

 screen.setScreenDestination(new Coor4D(18.0, 47.0, 0, 4*3600));
 screen.setScreenDestination(new Coor4D(36.0, 48.2, 0, 7*3600));

The next 4 lines created a new Silkworm missile site. It is located 35 miles from the center
of the screen, and it’s angle of attack can be varied by iterating thru the values of angle
desired. It provides a total of 200 missiles to the site, and assigns it to the RED side.

 double silkX = 35 * Math.sin(Math.PI * angle/180.0);
 double silkY = 35 * Math.cos(Math.PI * angle/180.0);
 SilkwormSite site1 = new SilkwormSite(new Coor3D(silkX, silkY, 0), 200, Side.RED);
 r.addSite(site1);

These 3 lines of code set up the target area for the silkworm site. It will conduct an attack
against an elliptical AOU (center at (0, 0), oriented 000T, with semi-major axis 35 miles, and
semi-minor axis 25 miles). The attack will consist of 10 missiles and will start at time 60
seconds.

 Ellipse aou = new Ellipse(new Coor2D(0, 0), 0.0, 35.0, 25.0);
 FireMission f1 = new FireMission(60.0, numberOfMissiles, new Coor2D(0, 0), aou);
 site1.setMission(f1);

a) Starting a Run

These 5 lines of code start the execution, and direct that the run will stop at 600 seconds
of simulated time.

 Schedule.clearRerun();
 Schedule.setSingleStep(false);
 Schedule.setVerbose(false);
 Schedule.stopOnTime(600.0);
 Schedule.startSimulation();

b) Collecting the data

The code below causes the program to collect data for each ship from the run. This data
consists of the number of times that an individual ship was hit, the number of missiles that
achieved homing against it, and the number of Surface to Air Missiles it fired in defense of
the screen.

 int hits;
 int homes;
 int shots;
 for (int shipNumber = 0; shipNumber < ship.length; shipNumber++) {
 BasicModSimComponent thisShip = ship[shipNumber];

62

 hits = ((Integer) thisShip.getProperty("Hits", new Integer(0))).intValue();
 homes = ((Integer) thisShip.getProperty("HomedBy", new Integer(0))).intValue();
 shots = ((Integer) thisShip.getProperty("MissileShots", new Integer(0))).intValue();
 hitCounter[shipNumber].newObservation(hits);
 homesCounter[shipNumber].newObservation(homes);
 shotsCounter[shipNumber].newObservation(shots);
 }

The following 3 lines cause data to be recorded regarding missile performance.
Specifically the program records the number of ASM that were shot down by SAMs, the
number of ASM that were killed by point defenses or spoofed by chaff/EW, and the number
of ASMs that ran out of fuel.

 missilesShotDown.newObservation(tab.getMissilesKilledByMissiles());
 missilesPassive.newObservation(tab.getMissilesKilledByPassive());
 missilesFuel.newObservation(tab.getMissilesKilledByFuel());

c) Setting up for the next run

This code destroys the objects that were created for the run just completed. This frees up
computer memory for the execution of another trial. This process is repeated until the
specified number of trial runs at this attack angle and with this number of missiles (in this
case, a total of 5 runs had been specified) have been completed.

 screen.reset();
 r.reset();
 site1 = null;
 site2 = null;
 site3 = null;
 r = null;
 screen = null;
 Schedule.reset();
 }

d) Reporting the Data

This code section causes a formatted report of the statistical results of the 5 runs to be
displayed. These results consists of the mean, standard deviation of hits, maximum,
minimum numbers of hits, homings, and shots fired for each ship. In addition, these same
statistics are displayed for the numbers of ASMs shot down, the number that were killed
either passively or by point defense systems (grouped into a single ‘Passive’ category),
and the numbers of ASMs that ran out of fuel.

 System.out.println("Angle of attack " + angle);
 System.out.println("Averages by ship");
 System.out.println(" " + ’\t’ + ’\t’ + "HITS by Enemy Missiles" + ’\t’
 + ’\t’ + "HOMING by Enemy Missiles" + ’\t’
 + ’\t’ + "SHOTS at Enemy Missiles" + ’\t’

63

 + ’\t’ + ’\t’ + "Enemy missiles Killed");
 System.out.println("Name" + ’\t’ + ’\t’
 + "Mean" + ’\t’ + "Std Dev" + ’\t’ + "Max" + ’\t’ + "Min" + ’\t’
 + "Mean" + ’\t’ + "Std Dev" + ’\t’ + "Max" + ’\t’ + "Min" + ’\t’
 + "Mean" + ’\t’ + "Std Dev" + ’\t’ + "Max" + ’\t’ + "Min" + ’\t’
 + ’\t’ + "Mean" + ’\t’ + "Std Dev" + ’\t’ + "Max" + ’\t’ + "Min");
 for (int shipNumber = 0; shipNumber < ship.length; shipNumber++) {
 String name = ship[shipNumber].getName();
 String msg = name + ’\t’ + ’\t’;
 msg = msg + nf.format(hitCounter[shipNumber].getMean()) + ’\t’;
 msg = msg + nf.format(hitCounter[shipNumber].getStandardDeviation()) + ’\t’;
 msg = msg + nf.format(hitCounter[shipNumber].getMaxObs()) + ’\t’;
 msg = msg + nf.format(hitCounter[shipNumber].getMinObs()) + ’\t’;
 msg = msg + nf.format(homesCounter[shipNumber].getMean()) + ’\t’;
 msg = msg + nf.format(homesCounter[shipNumber].getStandardDeviation()) + ’\t’;
 msg = msg + nf.format(homesCounter[shipNumber].getMaxObs()) + ’\t’;
 msg = msg + nf.format(homesCounter[shipNumber].getMinObs()) + ’\t’;
 msg = msg + nf.format(shotsCounter[shipNumber].getMean()) + ’\t’;
 msg = msg + nf.format(shotsCounter[shipNumber].getStandardDeviation()) + ’\t’;
 msg = msg + nf.format(shotsCounter[shipNumber].getMaxObs()) + ’\t’;
 msg = msg + nf.format(shotsCounter[shipNumber].getMinObs()) + ’\t’;
 if (shipNumber == 1) {
 msg = msg + "Missile" + ’\t’ ;
 msg = msg+ nf.format(missilesShotDown.getMean()) + ’\t’;
 msg = msg + nf.format(missilesShotDown.getStandardDeviation()) + ’\t’;
 msg = msg + nf.format(missilesShotDown.getMaxObs()) + ’\t’;
 msg = msg + nf.format(missilesShotDown.getMinObs()) + ’\t’;
 }
 if (shipNumber == 2) {
 msg = msg + "Passive" + ’\t’;
 msg = msg+ nf.format(missilesPassive.getMean()) + ’\t’;
 msg = msg + nf.format(missilesPassive.getStandardDeviation()) + ’\t’;
 msg = msg + nf.format(missilesPassive.getMaxObs()) + ’\t’;
 msg = msg + nf.format(missilesPassive.getMinObs()) + ’\t’;
 }
 if (shipNumber == 3) {
 msg = msg + "Fuel" + ’\t’;
 msg = msg+ nf.format(missilesFuel.getMean()) + ’\t’;
 msg = msg + nf.format(missilesFuel.getStandardDeviation()) + ’\t’;
 msg = msg + nf.format(missilesFuel.getMaxObs()) + ’\t’;
 msg = msg + nf.format(missilesFuel.getMinObs()) + ’\t’;
 }

 System.out.println(msg);
 }
 for (int aa = 0; aa < 4; aa++) {
 hitCounter[aa].reset();
 homesCounter[aa].reset();
 shotsCounter[aa].reset();
 }

64

e) Analyzing other Attack Angles and Raid Sizes

Up to this point, we will have executed 5 runs that simulated the attack of 10
Silkworm missiles fired from 120R. The remaining code causes the angle of attack to
increment by 5 degrees so that we examine the entire arc of fire, from 120R to 240R in 5
degree segments.

 angle = angle + 5;

 }

If we had specified a maximum number of missiles greater than 10, the following
code would cause a repetition of all of the angular attacks for 20 missiles, then 30 missiles,
and so on, until the maximum raid size had been achieved.

 numberOfMissiles = numberOfMissiles + 10;
 }

Finally, the remaining code terminates the program.

 System.exit(0);
 }
}

3. TestRegistry Code, in it’s Entirety

As promised, the following is the entire Java source code for the

TestRegistry program:

package ASMD;
import modkit.*;
import simkit.*;
import modutil.spatial.*;
import modsim.*;
import java.util.*;
import simkit.data.*;
import java.text.NumberFormat;
import java.util.Locale;

public class TestRegistry extends BasicModSimComponent {

 public static void main(String[] args) {
 Locale loc = Locale.US;
 NumberFormat nf = NumberFormat.getInstance(loc);
 int numberOfMissiles = 10;
 BasicModSimComponent[] ship = new BasicModSimComponent[4];
 while (numberOfMissiles <= 10) {

65

 System.out.println("Raid Size = " + numberOfMissiles);
 double angle = 120.0;
 while (angle < 240) {
 SimpleStats[] hitCounter = new SimpleStats[5];
 SimpleStats[] homesCounter = new SimpleStats[5];
 SimpleStats[] shotsCounter = new SimpleStats[5];
 SimpleStats missilesShotDown = new SimpleStats(SamplingType.TALLY);
 SimpleStats missilesPassive = new SimpleStats(SamplingType.TALLY);
 SimpleStats missilesFuel = new SimpleStats(SamplingType.TALLY);
 for (int i = 0; i < 4; i++) {
 hitCounter[i] = new SimpleStats(SamplingType.TALLY);
 homesCounter[i] = new SimpleStats(SamplingType.TALLY);
 shotsCounter[i] = new SimpleStats(SamplingType.TALLY);
 }
 for (int runCount = 1; runCount <= 5; runCount++) {
 Tabulator tab = new Tabulator();
 FireMode fireMode = new FireMode("SLS", 1);
 Side[] colors = {Side.BLUE, Side.RED};
 NewRegister r = new NewRegister(colors, tab, fireMode);
 CG47 Antietam = new CG47("Antietam", Side.BLUE);
 CVN Nimitz = new CVN("Nimitz", Side.BLUE);
 DD963 Stump = new DD963("Stump", Side.BLUE);
 DD963 Moos = new DD963("Hancock", Side.BLUE);
 ship[0] = Antietam;
 ship[1] = Nimitz;
 ship[2] = Stump;
 ship[3] = Moos;
 for (int shipNumber = 0; shipNumber < ship.length; shipNumber++) {
 r.addUnit(ship[shipNumber], true);
 }
 Screen screen = new Screen("Blue Screen");
 screen.addGuide(new ScreenLocation(new Coor4D(0, 0, 230, 0), Nimitz));
 double angle1 = 130.0 * Math.PI/180.0;
 double angle2 = 150.0 * Math.PI/180.0;
 screen.addUnit(new ScreenLocation(new Coor4D(2, 4, angle1, angle2), Stump));
 angle1 = 210.0 * Math.PI/180.0;
 angle2 = 230.0 * Math.PI/180.0;
 screen.addUnit(new ScreenLocation(new Coor4D(2, 4, angle1, angle2), Moos));
 screen.addUnit(new ScreenLocation(new Coor4D(4, 8, -Math.PI/8.0, Math.PI/8.0), Antietam));
 screen.setScreenDestination(new Coor4D(18.0, 47.0, 0, 4*3600));
 screen.setScreenDestination(new Coor4D(36.0, 48.2, 0, 7*3600));
 double silkX = 35 * Math.sin(Math.PI * angle/180.0);
 double silkY = 35 * Math.cos(Math.PI * angle/180.0);
 SilkwormSite site1 = new SilkwormSite(new Coor3D(silkX, silkY, 0), 200, Side.RED);
 SilkwormSite site2 = new SilkwormSite(new Coor3D(0, 50, 0), 25, Side.RED);
 SilkwormSite site3 = new SilkwormSite(new Coor3D(10, 40, 0), 25, Side.RED);
 r.addSite(site1);
 r.addSite(site2);
 r.addSite(site3);
 Ellipse aou = new Ellipse(new Coor2D(0, 0), 0.0, 35.0, 25.0);
 FireMission f1 = new FireMission(60.0, numberOfMissiles, new Coor2D(0, 0), aou);
 site1.setMission(f1);

66

 Schedule.clearRerun();
 Schedule.setSingleStep(false);
 Schedule.setVerbose(false);
 Schedule.stopOnTime(600.0);
 Schedule.startSimulation();
 int hits;
 int homes;
 int shots;
 for (int shipNumber = 0; shipNumber < ship.length; shipNumber++) {
 BasicModSimComponent thisShip = ship[shipNumber];
 hits = ((Integer) thisShip.getProperty("Hits", new Integer(0))).intValue();
 homes = ((Integer) thisShip.getProperty("HomedBy", new Integer(0))).intValue();
 shots = ((Integer) thisShip.getProperty("MissileShots", new Integer(0))).intValue();
 hitCounter[shipNumber].newObservation(hits);
 homesCounter[shipNumber].newObservation(homes);
 shotsCounter[shipNumber].newObservation(shots);
 }
 missilesShotDown.newObservation(tab.getMissilesKilledByMissiles());
 missilesPassive.newObservation(tab.getMissilesKilledByPassive());
 missilesFuel.newObservation(tab.getMissilesKilledByFuel());
 screen.reset();
 r.reset();
 site1 = null;
 site2 = null;
 site3 = null;
 r = null;
 screen = null;
 Schedule.reset();
 }
 System.out.println("Angle of attack " + angle);
 System.out.println("Averages by ship");
 System.out.println(" " + ’\t’ + ’\t’ + "HITS by Enemy Missiles" + ’\t’
 + ’\t’ + "HOMING by Enemy Missiles" + ’\t’
 + ’\t’ + "SHOTS at Enemy Missiles" + ’\t’
 + ’\t’ + ’\t’ + "Enemy missiles Killed");
 System.out.println("Name" + ’\t’ + ’\t’
 + "Mean" + ’\t’ + "Std Dev" + ’\t’ + "Max" + ’\t’ + "Min" + ’\t’
 + "Mean" + ’\t’ + "Std Dev" + ’\t’ + "Max" + ’\t’ + "Min" + ’\t’
 + "Mean" + ’\t’ + "Std Dev" + ’\t’ + "Max" + ’\t’ + "Min" + ’\t’
 + ’\t’ + "Mean" + ’\t’ + "Std Dev" + ’\t’ + "Max" + ’\t’ + "Min");
 for (int shipNumber = 0; shipNumber < ship.length; shipNumber++) {
 String name = ship[shipNumber].getName();
 String msg = name + ’\t’ + ’\t’;
 msg = msg + nf.format(hitCounter[shipNumber].getMean()) + ’\t’;
 msg = msg + nf.format(hitCounter[shipNumber].getStandardDeviation()) + ’\t’;
 msg = msg + nf.format(hitCounter[shipNumber].getMaxObs()) + ’\t’;
 msg = msg + nf.format(hitCounter[shipNumber].getMinObs()) + ’\t’;
 msg = msg + nf.format(homesCounter[shipNumber].getMean()) + ’\t’;
 msg = msg + nf.format(homesCounter[shipNumber].getStandardDeviation()) + ’\t’;
 msg = msg + nf.format(homesCounter[shipNumber].getMaxObs()) + ’\t’;
 msg = msg + nf.format(homesCounter[shipNumber].getMinObs()) + ’\t’;
 msg = msg + nf.format(shotsCounter[shipNumber].getMean()) + ’\t’;

67

 msg = msg + nf.format(shotsCounter[shipNumber].getStandardDeviation()) + ’\t’;
 msg = msg + nf.format(shotsCounter[shipNumber].getMaxObs()) + ’\t’;
 msg = msg + nf.format(shotsCounter[shipNumber].getMinObs()) + ’\t’;
 if (shipNumber == 1) {
 msg = msg + "Missile" + ’\t’ ;
 msg = msg+ nf.format(missilesShotDown.getMean()) + ’\t’;
 msg = msg + nf.format(missilesShotDown.getStandardDeviation()) + ’\t’;
 msg = msg + nf.format(missilesShotDown.getMaxObs()) + ’\t’;
 msg = msg + nf.format(missilesShotDown.getMinObs()) + ’\t’;
 }
 if (shipNumber == 2) {
 msg = msg + "Passive" + ’\t’;
 msg = msg+ nf.format(missilesPassive.getMean()) + ’\t’;
 msg = msg + nf.format(missilesPassive.getStandardDeviation()) + ’\t’;
 msg = msg + nf.format(missilesPassive.getMaxObs()) + ’\t’;
 msg = msg + nf.format(missilesPassive.getMinObs()) + ’\t’;
 }
 if (shipNumber == 3) {
 msg = msg + "Fuel" + ’\t’;
 msg = msg+ nf.format(missilesFuel.getMean()) + ’\t’;
 msg = msg + nf.format(missilesFuel.getStandardDeviation()) + ’\t’;
 msg = msg + nf.format(missilesFuel.getMaxObs()) + ’\t’;
 msg = msg + nf.format(missilesFuel.getMinObs()) + ’\t’;
 }

 System.out.println(msg);
 }
 for (int aa = 0; aa < 4; aa++) {
 hitCounter[aa].reset();
 homesCounter[aa].reset();
 shotsCounter[aa].reset();
 }
 angle = angle + 5;
 }
 numberOfMissiles = numberOfMissiles + 10;
 }
 System.exit(0);
 }
}

68

69

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center………………………………………….2
8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, Virginia 22060-6218

2. Dudley Knox Library……………….. ………………………………………….2
Naval Postgraduate School
411 Dyer Rd.
Monterey, California 93943-5101

3. Professor James G. Taylor………………………………………………………5
Code OR
Naval Postgraduate School
Monterey, California 93943-5002

4. Professor Arnold H. Buss……………...………………………………………….2
Code OR/SB
Naval Postgraduate School
Monterey, California 93943-5002

5. Professor Gordon H. Bradley..………...………………………………………….1
Code OR/BZ
Naval Postgraduate School
Monterey, California 93943-5002

6. Wayne P. Hughes……………………...………………………………………….2
Code OR/
Naval Postgraduate School
Monterey, California 93943-5002

7. LCDR James R. Townsend…………...………………………………………….3
Naval Undersea Warfare Center
Newport, Rhode Island 02841-1708

